Dimensions of Invariant Secant Varieties

Additive rank decompositions

 $f = x_1 + \ldots + x_m.$ (1)

X is assumed to be irreducible and nondegenerate.

A surprising lot of problems fall into this category:

- 1. The rank decomposition of a matrix *f* is obtained for $X = \{uv^T | u, v \in \mathbb{C}^n\}$. Indeed, a matrix of rank at most m decomposes as $f = u_1v_1^T + \ldots + u_mv_m^T$.
- 2. The rank decomposition of a symmetric tensor is obtained, if $X = \{v^{\otimes d} \mid v \in \mathbb{C}^n\}$ is taken as the Veronese variety. Indeed, a symmetric tensor *f* of rank at most *m* decomposes as $f = v_1^{\otimes d} + \ldots + v_m^{\otimes d}$.
- 3. Skew-symmetric tensor decomposition is obtained, if $X = \{v_1 \wedge \ldots \wedge v_d \mid v_1, \ldots, v_d \in \mathbb{C}^n\}$ is taken as the (affine cone of the) Grassmannian variety Gr(*d, n*). Indeed, a skew symmetric tensor *f* of skew rank *m* decomposes as $f = (v_{11} \land \ldots \land v_{1d}) + \ldots + (v_{m1} \land \ldots \land v_{md})$.

- Q1: Generic rank: What is the minimal $m = m_q$ needed to represent a general $f \in \mathcal{L}$?
- Q2: Identifiability: Is the decomposition unique, when *m* is small and *f* is built from general $x_1, \ldots, x_m \in X$? What is the largest $m = m_{id}$ such that generic m-fold sum decompositions are unique?
- **Q2': Nondefectivity:** What is the maximum $m = m_0$, such that a general sum of m elements of *X* has finitely many decompositions as *m*-fold sums from *X*?

The first inequality is a very recent result, shown in [\[5\]](#page-0-0). As a consequence, Q2 and Q2' often have almost the same answer. We want to understand the gap between m_0 and m_a . We give the following partial answer:

Questions

- 1. The generic rank is trivially known to be $m_q = n$ for $n \times n$ matrices. Since matrices of rank-2 have infinitely many rank decompositions, it holds $m_0 = 1$. Therefore, the bound $m_q - m_0 = \dim X - 1$ is tight.
- 2. The generic rank of Waring decompositions in degree at least 3 is known by the famous Alexander-Hirschowitz theorem. Here, it always holds that $m_q - m_0 \leq 2$. There are only 5 exceptional cases where the difference is two. In all other cases, $m_q - m_0 \leq 1$.
- 3. The generic rank of skew-symmetric tensor decomposition is unknown. A solution would have importance to coding theory.
- 4. The generic rank of partially symmetric tensors (Segre-Veronese varieties) has recently been determined for larger degrees, see [\[1\]](#page-0-1). Abo et al. used our bound on $m_q - m_0$ to obtain starting cases for their induction proof. Figure [2](#page-0-2) shows a case that is still open.

A general tensor $f\in (\mathbb{C}^6)^{\otimes 2}\otimes S^2(\mathbb{C}^6)$ can be written as a sum of at most 63 elements from $X.$ Generic tensors of *X*-rank at most 32 are identifiable.

Note that

Let *G* a group and let *X* be an irreducible affine cone living in an irreducible *G*-module L. Assume *X* is *G*-invariant (thus $h \cdot X = X$ for all $h \in G$). Then, it holds

$$
m_0 - 1 \stackrel{\text{(if } X \text{ smooth)}}{\leq} m_{\text{id}} \leq m_0 \leq \frac{\dim \mathcal{L}}{\dim X} \leq m_g \tag{2}
$$

Answer:
$$
m_g - m_0 \le \dim X - 1
$$
 (if X satisfies some conditions). (3)

Overview

Examples

The tensor $f=e_1\otimes e_2\otimes e_3^{\otimes 2}+e_4\otimes e_5\otimes e_6^{\otimes 2}\in(\mathbb{C}^6)^{\otimes 2}\otimes S^2(\mathbb{C}^6)$ has a unique representation as a sum of at most two elements of $X=\{v_1\otimes v_2\otimes v_3^{\otimes 2}\}$ $\mathbb{S}_3^2 | v_1, v_2, v_3 \in \mathbb{C}^6$.

since the left-hand-side is a subspace of the RHS and both have the same dimension *am*. This means we can introduce any general point $z \in X$ without changing the space U_y . By the same reasoning backwards, we can in fact exchange z with any of x_1, \ldots, x_m , without changing the space U_y . Therefore, $U_y = (T_{x_1}X + \ldots + T_{x_{m-1}}X + T_zX) \cap T_yX$. Applying this inductively, we can exchange x_1, \ldots, x_m by any set z_1, \ldots, z_m of general points of $X.$ Hence $U_y=(T_{z_1}X+\ldots+T_{z_m}X)\cap T_yX$ for all general $z_i.$ Now, choose $z_i=gx_i$ for some $g \in G$. The previous argument shows $gU_y = U_{gy}$. In other words, the space $T_{x_1}X + \ldots + T_{x_m}X$ contains the subspace gU_y for any $g \in G$. Therefore, it contains the *G*-module generated by U_y . Since $\dim U_y = a_m > 0$, this *G*-module cannot be zero. Since the *G*-module *L* is irreducible, we conclude that $T_{x_1}X + \ldots + T_{x_m}X = \mathcal{L}$.

The Segre-Veronese variety in $(\mathbb{C}^n)^{\otimes 2} \otimes S^2(\mathbb{C}^n)$

Figure 2. **The Segre-Veronese variety** $X = \{v_1 \otimes v_2 \otimes v_3^{\otimes 2}\}$ $\frac{\otimes 2}{3} \mid v_1, v_2, v_3 \in \mathbb{C}^n\}$: Comparison of our bounds for m_0 and m_q with the previous best-known bound for m_0 by Laface-Massarenti-Rischter.

Theorem (B. and Casarotti, 2023, [\[2\]](#page-0-3))

 $m_g - m_0 \le \dim X - 1.$ (4)

In particular, $m_g \le \frac{\dim \mathcal{L}}{\dim X} + \dim X - 1$ and $m_0 \ge \frac{\dim \mathcal{L}}{\dim X} - \dim X + 1$.

Terracini's Lemma

For an irreducible affine cone *X*, we define the *m*-th secant variety as the (Zariski) closure of the set of *m*-fold sums of *X*:

to X equals \mathcal{L} .

-
-

Alexander Taveira Blomenhofer¹, Alex Casarotti²

¹University of Copenhagen

²Università degli Studi di Ferrara

$$
\sigma_m(X) = \overline{\{x_1 + \ldots + x_m \mid x_i \in X\}}\tag{5}
$$

Terracini's Lemma says: For general $x_1, \ldots, x_m \in X$ and general $f \in \langle x_1, \ldots, x_m \rangle$, the tangent space to $\sigma_m(X)$ at f equals $T_{x_1}X + \ldots + T_{x_m}X$.

Therefore, the generic rank is the least $m_q \in \mathbb{N}$ such that a sum of m_q general tangent spaces

For general $f \in \sigma_m(X)$, the decomposition problem $f = x_1 + \ldots + x_m$ has finitely many solutions ${x_1, \ldots, x_m}$ with $x_i \in X$, if and only if the sum of tangent spaces $T_{x_1}V_1 + \ldots + T_{x_m}V_m$ at general $x_1, \ldots, x_m \in X$ is a direct sum.

Example Applications

1. For Waring decompositions, take $X = \{v^{\otimes d} \mid v \in \mathbb{C}^n\}$ as the **Veronese** variety, $\mathcal{L} = S^d(\mathbb{C}^n)$ as the space of symmetric d-tensors on \mathbb{C}^n and $G = \text{GL}(\mathbb{C}^n)$.

2. For skew-symmetric decompositions, take $X = \text{Gr}(d, n)$ as the affine **Grassmannian**, $\mathcal{L} = \bigwedge^d (\mathbb{C}^n)$ as the space of alternating *d*-tensors on \mathbb{C}^n and $G = \mathrm{GL}(\mathbb{C}^n)$.

3. For standard tensor decompositions, take $X = \text{Segre}(n_1, \ldots, n_d) = \{v_1 \otimes \ldots \otimes v_d \mid v_i \in \mathbb{C}^{n_i}\}$ as the Segre variety, $\mathcal{L} = \mathbb{C}^{n_1} \otimes \ldots \otimes \mathbb{C}^{n_d}$ and $G = \text{GL}(\mathbb{C}^{n_1}) \times \ldots \times \text{GL}(\mathbb{C}^{n_d})$. 4. Segre-Veronese varieties $X = \mathrm{SegVer}(n_1^{d_1})$ $a_1^{d_1},\ldots, a_t^{d_t}$ $v_t^{d_t}$) = $\{v_1^{\otimes d_1} \otimes \ldots \otimes v_t^{\otimes d_t}\}$ $\int_t^{\otimes d_t} |v_i \in \mathbb{C}^{n_i} \}$ live in $\mathcal{L} = S^{d_1}(\mathbb{C}^{n_1}) \otimes \ldots \otimes S^{d_t}(\mathbb{C}^{n_t})$. They capture tensor decompositions with partial

symmetries. Here, the group is $G = GL(\mathbb{C}^{n_1}) \times \ldots \times GL(\mathbb{C}^{n_t})$.

The Grassmannian ${\rm Gr}(5,n)$ in $\bigwedge^5({\mathbb C}^n)$

To the contrary, assume there was a stationarity point $a_m = a_{m+1}$ of the sequence with $a_m > 0$. Then for all general $z \in X$, it holds that

Proof sketch (for brave & caffeinated readers)

There is a largest number m_0 such that a sum $T_{x_1}X + \ldots + T_{x_{m_0}}X$ of m_0 general tangent spaces to *X* is direct. Here, x_1, \ldots, x_{m_0} denote general points in *X*.

There is a smallest number m_g such that $T_{x_1}X + \ldots + T_{x_{m_g}}X = {\mathcal L}$ for any general choice of $x_1,\ldots,x_{m_g}.$ This number m_g coincides with the generic rank.

We claim that $m_q - m_0 \le \dim X - 1$. To see this, consider general $x_1, x_2, \ldots \in X$ and general $y \in X$. Define the sequence $a_1 \le a_2 \le a_3 \le \ldots$ via

$$
a_m := \dim(T_{x_1}X + \ldots + T_{x_m}X) \cap T_yX \tag{6}
$$

Note that a_{m_0} is the first nonzero value of the sequence and $a_{m_g}=\dim X.$ We claim that the sequence is strictly monotone between m_0 and m_q . Indeed, if this is true, then

$$
m_g - m_0 \le a_{m_g} - a_{m_0} \le \dim X - 1. \tag{7}
$$

$$
U_y := (T_{x_1}X + \ldots + T_{x_m}X) \cap T_yX = (T_{x_1}X + \ldots + T_{x_m}X + T_zX) \cap T_yX, \tag{8}
$$

References

[1] Hirotachi Abo, Maria Chiara Brambilla, Francesco Galuppi, and Alessandro Oneto. Non-defectivity of Segre-Veronese varieties, 2024.

[2] Alexander Taveira Blomenhofer and Alex Casarotti. Nondefectivity of invariant secant varieties, 2024. [arxiv:2312.12335.](https://arxiv.org/abs/2312.12335)

[3] Maria Virginia Catalisano, Anthony Geramita, and Alessandro Gimigliano. Secant varieties of Grassmann varieties. *Proceedings of the*

- [arxiv:2406.20057.](https://arxiv.org/abs/2406.20057)
-
- *American Mathematical Society*, 133(3):633–642, 2005.
- *Iberoam.*, 38(5):1605,1635, 2022.
-

[4] Antonio Laface, Alex Massarenti, and Rick Rischter. On secant defectiveness and identifiability of Segre-Veronese varieties. *Rev. Mat.*

[5] Alex Massarenti and Massimiliano Mella. Bronowski's conjecture and the identifiability of projective varieties, 2022.

